Silver Nanoparticles Induced Cardiac Toxicity

Main Article Content

Yasmeen M. Amer
Afaf Elatrash
Ehab Tousson


Aim: Silver nanoparticles (Ag NPs) have been utilized in a wide assortment of uses as antimicrobial specialists and have been fused into a few items as mechanical and food items not withstanding natural and clinical applications. Inordinate utilization of nanoparticles might be dangerous to human wellbeing and the climate. No sufficient information present about the toxic effect of silver nanoparticles on heart. Accordingly, The current study aimed to investigate the cardiac toxicity of silver nanoparticles.

Study Design: A total 20 male Wistar rats were divided into 2 equivalent groups (Group 1, control; group 2, Ag NPs).

Results: Current results revealed that; Ag NPs induced a significant decrease in serum e kinase myoglobin (CK-MB), phosphokinase (CPK), myoglobin, alkaline phosphatase (ALP) and aspartate aminotransferase (AST), cholesterol, triglycerides, and low-density lipids (LDL) while they cause a significant depletion in the levels of high-density lipids (HDL) in the sera of Ag NPs group (Gp2) when compared with the control group (Gp1).

Conclusion: The present study confirmed that; silver nanoparticles (Ag NPs) induced cardiac toxicity in rats.

Silver nanoparticles, heart, cardiac enzymes, lipid profiles, rats

Article Details

How to Cite
Amer, Y. M., Elatrash, A., & Tousson, E. (2021). Silver Nanoparticles Induced Cardiac Toxicity. Asian Journal of Cardiology Research, 3(2), 12-18. Retrieved from
Original Research Article


Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions, and potential environmental implications. Science of The Total Environment. 2008;400(1-3):396-414.
DOI: 10.1016/j.scitotenv.2008.06.042

Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews. 2012; 112(4):2373–2433. Available:

Alashmouni S, El-Atrash A, Kandeel M, Tousson E. Role of oats in ameliorating hepatic and renal toxicity induced by acute lead nanoparticles in male rats. Asian Journal of Research in Biochemistry. 2020; 7(2):38-45.

Alotaibi B, El‐Masry TA, Tousson E, Alarfaj SJ, Saleh A. Therapeutic effect of rocket seeds (Eruca sativa L.) against hydroxyapatite nanoparticles injection induced cardiac toxicity in rats. Pak. J. Pharm. Sci. 2020;33(4):1839-1845.

Alotaibi B, Tousson E, El‐Masry TA, Altwaijry N, Saleh A. Ehrlich ascites carcinoma as model for studying the cardiac protective effects of curcumin nanoparticles against cardiac damage in female mice. Environmental Toxicology. 2020;1–9.
DOI: 10.1002/tox.23016

Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in colloid and interface science. 2009;145(1-2):83–96. Available:

Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: Advances and pro (Krutyakov, Kudrinskiy, Olenin, & Lisichkin) spects. Russian Chemical Reviews. 2008; 77(3), 233-257.
DOI: 10.1070/rc2008v077n03abeh003751

Chopra I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? The Journal of antimicrobial chemotherapy. 2007;59(4):587–590.

Altwaijry N, El‐Masry TA, Alotaibi B, Tousson E, Saleh A. Therapeutic effects of rocket seeds (Eruca sativa L.) against testicular toxicity and oxidative stress caused by silver nanoparticles injection in rats. Environmental Toxicology. 2020; 35(9):952-960.

Maynard AD. Nanotechnology: A research strategy for addressing risk. Washington, DC: Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies; 2006.

Chen X, Schluesener HJ. Nanosilver: A nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12.
DOI: 10.1016/j. toxlet.2007.10.004

Böckmann J, Lahl H, Eckert T, Unterhalt B. Blood levels of titanium before and after oral administration of titanium dioxide [Titan-blutspiegel vor und nach belastungsversuchen mit titandioxid]. Die Pharmazie. 2000;55:3-140.

Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology. 2007;1:2–25.

Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):1–20.

Bishop C, Chu TM, Shihabi ZK. Single stable reagent for creatine kinase assay. Clinical chem. 1971;17(6):548-550.

Salama AF, Tousson E, Shalaby KA, Hussien HT. Protective effect of curcumin on chloroform as by-product of water chlorination induced cardiotoxicity. Biomedicine & Preventive Nutrition. 2014; 4(2):225-30.

Tousson E, Bayomy MF, Ahmed AA. Rosemary extract modulates fertility potential, DNA fragmentation, injury, KI67 and P53 alterations induced by etoposide in rat testes. Biomedicine & Pharmacotherapy. 2018;98:769-74.

El-Moghazy M, Zedan NS, El-Atrsh AM, El-Gogary M, Tousson E. The possible effect of diets containing fish oil (omega-3) on hematological, biochemical and histopathogical alterations of rabbit liver and kidney. Biomedicine & Preventive Nutrition. 2014;4(3):371-7.

Tousson E, El-Moghazy M, Massoud A, El-Atrash A, Sweef O, Akel A. Physiological and biochemical changes after boldenone injection in adult rabbits. Toxicology and industrial health. 2016;32(1):177- 82.

Salama AF, Kasem SM, Tousson E, Elsisy MK. Protective role of L-carnitine and vitamin E on the kidney of atherosclerotic rats. Biomedicine & Aging Pathology. 2012;2(4):212-5.

Salama AF, Kasem SM, Tousson E, Elsisy MK. Protective role of L-carnitine and vitamin E on the testis of atherosclerotic rats. Toxicology and industrial health. 2015;31(5):467-74.

Tousson E. Histopathological alterations after a growth promoter boldenone injection in rabbits. Toxicol. Industrial Health. 2016;32(2):299-305.

Tousson E, El-Moghazy M, Massoud A, Akel A. Histopathological and immunohistochemical changes in the testes of rabbits after injection with the growth promoter boldenone. Reproductive Sciences. 2012;19(3):253-9.

Karmakar Q. Zhang Y. Zhang. Neurotoxicity of nanoscale materials, J. Food Drug Anal. 2014;22(1):147–160.

Gutierrez R, Cubiberti G. Effective models of charge transport in DNA nanowires. In: Shoseyov O, Levy I (eds) NanoBioTechnology bioinspired devices and materials of the future. Human Press Inc. Totowa. 2008;108–117.

Zamudio A, Elias A, Rodriguez-Manzo JA, Lopez-Urias F, Rodriguez-Gattorno G, Lupo F, Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small. 2006;2(3):346-350.
DOI: 10.1002/smll.200500348

Godin BS, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for therapy and diagnosis of cardiovascular diseases. Trends Pharmacol Sci. 2010; 31(5):199–205.
DOI: 10.1016/

Espinosa-Cristobal LF, Martinez-Castañon GA, Loyola-Rodriguez JP, Patiño-Marin N, Reyes-Macías JF, Vargas-Morales JM. Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. Journal of Nanoparticle Research. 2013;15(6).
DOI: 10.1007/s11051-013-1702-6

Rathore M, Mohanty IR, Maheswari U, Dayal N, Suman R, Joshi DS. Comparative in vivo assessment of the subacute toxicity of gold and silver nanoparticles. Journal of Nanoparticle Research. 2014;16(4).
DOI: 10.1007/s11051-014-2338-x

Sulaiman FA, Adeyemi OS, Akanji MA, Oloyede HO, Sulaiman AA, Olatunde A. Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. Journal of Acute Medicine. 2015; 5(4):96-102.
DOI: 10.1016/j.jacme.2015.09.005

Adeyemi OS, Adewumi I. Biochemical evaluation of silver nanoparticles in wistar rats. International Scholarly Research Notices. 2014;1-8.
DOI: 10.1155/2014/196091=